- Přehledy IS
- APS (25)
- BPM - procesní řízení (23)
- Cloud computing (IaaS) (10)
- Cloud computing (SaaS) (31)
- CRM (52)
- DMS/ECM - správa dokumentů (19)
- EAM (17)
- Ekonomické systémy (68)
- ERP (75)
- HRM (28)
- ITSM (6)
- MES (33)
- Řízení výroby (36)
- WMS (28)
- Dodavatelé IT služeb a řešení
- Datová centra (25)
- Dodavatelé CAD/CAM/PLM/BIM... (41)
- Dodavatelé CRM (38)
- Dodavatelé DW-BI (50)
- Dodavatelé ERP (66)
- Informační bezpečnost (48)
- IT řešení pro logistiku (48)
- IT řešení pro stavebnictví (26)
- Řešení pro veřejný a státní sektor (27)


















![]() | Přihlaste se k odběru zpravodaje SystemNEWS na LinkedIn, který každý týden přináší výběr článků z oblasti podnikové informatiky | |
![]() | ||
Jak si pomoci datovou analytikou v době krize
Rostoucí inflace, nedostatek pracovních sil a surovin, ale i narušené logistické řetězce a nízká kvalita dopravní infrastruktury či dopady pandemie COVID-19, to jsou jen některé z problémů, které ovlivňují ekonomickou situaci, mohou zapříčinit její zhoršení a velmi tvrdě dopadnout na firmy.


V situacích, kdy se firmy dostávají do krize, ať už z důvodu ekonomických či celospolečenských změn, vzniká obrovský tlak na velmi rychlá rozhodnutí o dalším směřováním firmy, často včetně vynucených úprav personální politiky. V těchto momentech roste riziko unáhleného a mnohdy až zkratkovitého jednání plného emocí a intuice, které ne vždy vede ke správným rozhodnutím. Je to tedy správný a v daném okamžiku jediný možný přístup? Jakou roli zde hrají data? Přirovnejme si tuto situaci k první pomoci – obrovská míra stresu, jakému jsou v nové situaci někteří lidé vystaveni, zapříčiní, že nejsou schopni uváženého, správného jednání. Naopak profesionální záchranáři mají situace naučené a řídí se přesně danými postupy, v rámci kterých pracují s aktuálními daty. Stejnou váhu mají data a schopnost je správně vyhodnotit a použít i v podnikání.
Podniková analytika může v krizových situacích výrazně pomoci nejen v oblastech řízení nákladů, predikce vývoje prodejů, optimalizace dodavatelských řetězců či sledování trhu a konkurence. Důležitou podmínkou je však její správné nastavení, a to včetně podpory analytické kultury napříč celou firmou. To však zpravidla není možné bez určitých znalostí a zkušeností v oblasti datových věd, pokročilé analytiky a umělé inteligence s orientací na business. Soubor těchto znalostí označujeme jako datovou gramotnost – tedy schopnost porozumět datům a správně je využívat. Na základě výzkumu platformy Data & Business VŠE dělíme kompetence datové gramotnosti na znalosti (porozumění datovým konceptům nebo přístupům) a dovednosti (praktická schopnost aplikovat tyto koncepty nebo přístupy). Kompetence pak dále dělíme do pěti kategorií, kterými jsou A. Koncepce dat, etika a bezpečnost, B. Analytické principy a metody, C. Sběr a příprava dat, D. Analýza a vyhodnocení dat a E. Interpretace dat, komunikace a rozhodování. V praxi můžeme říci, že běžný firemní uživatel je konzumentem analytických výstupů vytvořených ostatními a musí být schopen řešit své problémy analytickým způsobem s použitím dat, nemusí je ale umět shromažďovat a připravovat. Na druhou stranu pokročilí uživatelé řeší problémy analytickým způsobem s daty od začátku do konce, včetně jejich získávání a transformace.
Mezi oblasti, kde v současné době plné celospolečenských změn vidíme nejzřetelněji mnohostranné přínosy datové analytiky, patří například zdravotnictví a logistika. Zde lze demonstrovat, jak datová analytika může pomoci nejen v době krize a že pracovat na rozvoji výše uvedených kompetencí, abychom dokázali využít její potenciál, se vyplatí.
Ve zdravotnictví intuice nestačí
Z pohledu každého zdravotnického zařízení je proces plánování, provádění a úspěšné vykazování poskytované léčebné péče klíčem k ekonomické a finanční stabilitě. Je proto velmi důležité v této oblasti nasadit co nejvíce exaktních procesů k podpoře strategického rozhodování a řízení. Je až s podivem, jak často je však v této klíčové oblasti řízení založeno na intuici a dlouholetých zvycích, a jak málo se využívají nové technologie, jako je datová analytika nebo využití prediktivních funkcí, např. umělé inteligence a strojového učení. Nicméně argumenty postavené proti datové „pravdě“ ve stylu „My to ale děláme hezky!“ dlouhodobě neobstojí, a dříve nebo později se projeví na jednom místě, které je proti emočnímu stylu řízení inertní, a tím je bankovní účet. Navíc, v současné situaci, kdy musí zdravotnická zařízení díky probíhající pandemii reagovat na nestandardní situaci změnou struktury léčebné péče a mechanismů její úhrady, a tím pádem čelit nestandardním podmínkám, na které nelze aplikovat intuitivní a zkušenostní principy, je význam datové vědy důležitější než kdy jindy. A ti, kteří již před vypuknutím pandemie vsadili na kartu exaktnosti, jsou nyní ve velké konkurenční výhodě.
Logistika závisí na datech
Mnoho z nás si pamatuje ze studií klasickou optimalizační úlohu cesty pošťáka při rozvozu zásilek k adresátům. Tato úloha se snaží optimalizovat cestu s cílem dosáhnout co nejkratší vzdálenosti. V současnosti, kdy byl celý svět skokově paralyzován pandemickou krizí, nově vznikající služby online objednávání a doručování zboží postavily mnoho firem, pro které je distribuce koncovým zákazníkům novinkou a nejedná se o jejich primární službu, před otázku, jak tuto skokovou poptávku optimalizovat. A pokud se zamyslíme nad tím, jaké parametry mohou do této úlohy vstupovat mimo základní požadavek optimalizace vzdálenosti, uvědomíme si, že tato úloha je jako stvořená pro datovou analýzu. Informace o aktuální dopravní situaci, pozici „pošťáka“ nebo vytíženosti jednotlivých tras v průběhu dne dostupné online nabízí kombinace technologií, jako je IoT, datová analytika, umělá inteligence a strojové učení, které nám umožní rozhodování na základě okamžitých exaktních dat o dané situaci, predikci vývoje a korekčních zásahů v reálném čase.
Pro někoho by to mohlo znít jako sci-fi, ale firmy, které tyto technologie zavedly nebo zavádějí, investují do své budoucnosti a v silné konkurenci přežijí.
![]() |
Ing. Martin Potančok, Ph.D. Martin Potančok působí jako business analytik na velkých mezinárodních projektech. Na Fakultě informatiky a statistiky se věnuje výuce a výzkumným projektům z oblasti využití dat v rozhodovacích procesech a ukazuje, jak řídit analytiku ve firmách. Je spoluzakladatelem vzdělávací platformy Data & Business VŠE. |
![]() |
Ing. Vlastimil Černý, MBA Vlastimil Černý se specializuje na řízení a koordinaci poradenských a implementačních projektů v oblasti zdravotní péče, sahajících od poskytovatelů po plátce zdravotní péče, se zaměřením na oblasti eHealth, managementu, zdravotní péče, financí, veřejných zakázek, informačních a komunikačních technologií, a to zejména v oblasti hybridních cloudových technologií, umělé inteligence, strojového učení, internetu věcí a pokročilé datové analytiky. |
Zdroj: Smolníková, M., Chalupová, H., Potančok, M., Novotný, O., & Puskas-Juhasz, R. (2021). Building and testing a comprehensive data literacy model for business users. Paper presented at the IDIMT 2021 - Pandemics: Impacts, Strategies and Responses, 29th Interdisciplinary Information Management Talks, 125-132


![]() ![]() | ||||||
Po | Út | St | Čt | Pá | So | Ne |
1 | 2 | 3 | 4 | 5 | 6 | |
7 | 8 | 9 | 10 | 11 | 12 | 13 |
14 | 15 | 16 | 17 | 18 | 19 | 20 |
21 | 22 | 23 | 24 | 25 | 26 | 27 |
28 | 29 | 30 | 1 | 2 | 3 | 4 |
5 | 6 | 7 | 8 | 9 | 10 | 11 |
Formulář pro přidání akce
15.5. | Konference SCADA Security |
22.5. | Akce pro automobilové dodavatele "3DEXPERIENCE... |
12.6. | Konference ABIA CZ 2025: setkání zákazníků a partnerů... |
29.9. | The Massive IoT Conference |