- Přehledy IS
- APS (25)
- BPM - procesní řízení (23)
- Cloud computing (IaaS) (10)
- Cloud computing (SaaS) (31)
- CRM (52)
- DMS/ECM - správa dokumentů (19)
- EAM (17)
- Ekonomické systémy (68)
- ERP (87)
- HRM (28)
- ITSM (6)
- MES (33)
- Řízení výroby (36)
- WMS (28)
- Dodavatelé IT služeb a řešení
- Datová centra (25)
- Dodavatelé CAD/CAM/PLM/BIM... (40)
- Dodavatelé CRM (37)
- Dodavatelé DW-BI (50)
- Dodavatelé ERP (63)
- Informační bezpečnost (43)
- IT řešení pro logistiku (48)
- IT řešení pro stavebnictví (26)
- Řešení pro veřejný a státní sektor (27)
CRM systémy
Plánování a řízení výroby
AI a Business Intelligence
DMS/ECM - Správa dokumentů
HRM/HCM - Řízení lidských zdrojů
EAM/CMMS - Správa majetku a údržby
Účetní a ekonomické systémy
ITSM (ITIL) - Řízení IT
Cloud a virtualizace IT
IT Security
Logistika, řízení skladů, WMS
IT právo
GIS - geografické informační systémy
Projektové řízení
Trendy ICT
E-commerce B2B/B2C
CAD/CAM/CAE/PLM/3D tisk
Přihlaste se k odběru zpravodaje SystemNEWS na LinkedIn, který každý týden přináší výběr článků z oblasti podnikové informatiky | ||
Proč je dobré analyzovat big data nejen v logistice
Už jste to určitě taky slyšeli. Big data neboli velké objemy dat nejrůznějšího druhu nejsou jen tématem IT specialistů, mluví o nich kdekdo. Ne vždy je ovšem tak docela jasné (a to ani řečníkům samotným), k čemu můžou být big data dobrá, co dokážou říct a proč je nejen sledovat a ukládat, ale především analyzovat. Právě poslední bod zatím u většiny firem představuje zásadní háček.
Analyzovat obrovská množství dat a najít v nich to, co dává smysl a může firmě pomoci v jejím jednání, není snadné. Jisté je, že to za to stojí. Správné vyhodnocení posbíraných dat může podstatně pomoct zvýšit efektivitu, ušetřit náklady a jednoduše řečeno dělat věci tak, aby dávaly smysl.
Zaměřit se na big data znamená vyhodnotit celý řetězec, od zákazníků po dodavatele, a dívat se, co se v jednotlivých článcích celého řetězce děje. Když se pak na celý tenhle řetězec podíváme zdálky, ukáže se pořádně spletitý síťový graf, který můžete vidět na obrázku 1. Z něj je jasné, o jak komplexní věc jde.
Obr. 1: Schematické znázornění dodavatelských řetězců a jejich vazeb
Každé epicentrum, z nějž vybíhají čáry dál, představuje našeho zákazníka, kterému řídíme dodavatelský řetězec. Čím je tohle epicentrum větší, tím větší je i firma. Rovné čáry představují spojení s dodavateli. Celkem tu je 50 tisíc vazeb, z toho v 15 tisících jsou propojené. To je ohromná příležitost, 30 procent spojení je společných, ale firmy to zatím neumí využít a neplánují podle toho. Graf znázorňuje de facto vzorek celého trhu (jsou zde zachyceny firmy z obchodu, řetězce, potravináři, nápojáři, zdravotní i automobilový průmysl). Vyjádřeno v reálných číslech, aby bylo jasné, o jak velké téma, potažmo o jak obrovskou sumu jde: na pozadí těchto vazeb je 160 miliard obratu a 120 miliard nákupu, jinak řečeno dvě miliardy transakcí za dva roky a 23 milionů položek na prodejnách.
K čemu je to dobré?
- Znalost těchto spojení může pomoci zefektivnit plánování a celkově řízení dodavatelského řetězce. Pokud by se informace mezi jednotlivými články přenášely rychleji a cíleně, podařilo by se lépe reagovat na nejrůznější výkyvy v poptávce a reflektovat je bez zbytečných nákladů.
- Z dat se dají analyzovat promoakce. Bez speciálních nástrojů to není vůbec snadné, ale vzhledem k tomu, že se dnes až 50 procent obchodu prodává přes promoakce, je analýza jejich efektivity více než smysluplná.
- O kanibalizaci obchodníci moc nemluví. Opět to je z velké míry proto, že dnes jen těžko dokážou přesně určit, kde a v jakém rozsahu k ní dochází. Dáte slevu na eidam, a ementál zůstane v regálech. Podobně je na tom otázka, jaký je skutečný postpromoční efekt. Díky analýze dat jsme ale schopni zjistit i tohle.
- Výroba je taky věda. Když si vezmeme produkční linky a zamyslíme se nad tím, jak je postavit tak, aby fungovaly co nejefektivněji, vidíme další pořádný úkol. Možných kombinací, jak výrobní linku byť jen pro několik produktů poskládat, je ohromné množství. A bez dat je výsledná varianta především věcí zkušenosti a intuice.
- Samozřejmě že další velké téma je distribuce. Jak ji uspořádat, abychom zbytečně neplýtvali zdroji? Stačí pět vozidel a deset zastávek a možných kombinací je opět bezpočet.
Příklad z praxe – automobilový průmysl
Stejně jako big data, i další pojmy, jako umělá inteligence nebo třeba machine learning, najdete v každém druhém článku, který se alespoň trochu dotýká IT. Pravdou ovšem je, že obecně projektů tohoto typu je v České republice stále jako šafránu a těch skutečně přínosných snad ještě méně. Jak potvrzují výzkumy analytických firem jako Gartner, 70 až 90 % existujících dat průmyslové firmy stále neumí využít. Příčina není snad až tak na straně nabídky, jako na straně poptávky.
Každopádně ledy se začínají hýbat a zájem o tyto technologie kromě finančnictví a bankovnictví nyní stoupá i v tradičním průmyslu. Manažeři si začínají uvědomovat, že na některé otázky jim běžná lokální řešení neodpovědí a že někdy je třeba komplexního pohledu s využitím pokročilých algoritmů.
A přesně toto zadání stálo na začátku projektu, který jsme připravili pro našeho klienta v automobilovém průmyslu. Tým logistiky nás požádal, abychom pomohli s řízením spolehlivosti odvolávek dodavatelům (dodání požadovaného materiálu včas, ve správném množství a kvalitě). Otázky, na které jsme hledali odpověď, zněly například takto:
- Jaké jsou hlavní statistické faktory způsobující nespolehlivost odvolávek?
- Jaká je „riziková přirážka“ těchto faktorů?
- Jaké jsou možnosti predikce nespolehlivosti odvolávek?
- Jaká jsou rizika a úzká místa v procesu realizace dodávky?
Abychom tyto odpovědi našli, museli jsme nejprve zpracovat velké množství historických dat. Miliony historických odvolávek, záznamů o jejich průběhu nebo třeba denní data o počasí. Ve výsledku jsme tak měli stovky datových zdrojů, jejichž kontextovou analýzou a s využitím machine learningových algoritmů jsme hledali jehly v kupce sena. A to je přesně to, co tyto nové technologie a metody dělají. Dokážou ve změti dat prstem ukázat na to podstatné. Pomocí pokročilých algoritmů data miningu, machine learningu a heuristik jsme našli skutečně důležité informace vedoucí ke zlepšení celého procesu. Navíc byly tyto informace přiřazeny svému majiteli, tj. zodpovědnému disponentovi. Ten tak dostává personifikovaný dashboard o svých odvolávkách, kde se mu daří a kde je naopak potenciál pro zlepšení.
Obr. 2: Příklad optimalizované dodavatelské sítě
Každý disponent má ve výsledku jen několik málo svých „big data příběhů”, které ale reprezentují desítky procent všech nevěrných odvolávek. A jak jistě tušíte, každé zlepšení věrnosti odstraňuje potřebu držení pojistných zásob a rezervních kapacit zdrojů, nemluvě o riziku ztrát z nevýroby.
Big data jsou velké téma, okolo kterého se našlapuje často spíš opatrně a s velkým otazníkem, co všechno si pod tím představit. V každém případě je jasné, že obrovská množství dat z nejrůznějších oblastí a jejich propojení budou (a jsou) rozhodující pro budoucí a dlouhodobý úspěch. A právě v logistice to platí dvojnásob.
Tomáš Hladík Autor článku je projektovým manažerem společnosti Logio. |
prosinec - 2024 | ||||||
Po | Út | St | Čt | Pá | So | Ne |
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 | 1 | 2 | 3 | 4 | 5 |
23.1. | Odborný webinář Zabezpečení digitální identity zaměstnanců... |
24.1. | CyberEdu NIS2 Academy - druhý běh |
31.3. | HANNOVER MESSE 2025 |
Formulář pro přidání akce
9.4. | Digital Trust |